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Microwave and millimetre-wave non-destructive
testing and evaluation (NDT&E) has a long history
dating back to the late 1950s (Bahr 1982 Microwave
non-destructive testing methods; Zoughi 2000 Microwave
Non-destructive  testing and evaluation principles;
Feinstein 1967 Surface crack detection by microwave
methods; Ash 1973 In 3rd European Microwave
Conference; Auld 1981 Phys. Technol. 12, 149-154; Case
2017 Mater. Eval. 75). However, sustained activities in
this field date back to the early 1980s (Zoughi 1995 Res.
Nondestr. Eval. 7, 71-74; Zoughi 2018 Mater. Eval. 76,
1051-1057; Kharkovsky 2007 IEEE Instrumentation &
Measurement Magazine 10, 26-38). Owing to various
limitations associated with using microwaves and
millimetre waves for NDT&E, these techniques did
not see much utility in the early days. However, with
the advent and prevalence of composite materials
and structures, in a wide range of applications,
and technological advances in high-frequency
component design and availability, these techniques
are no longer considered as ‘emerging techniques’
(Zoughi 2018 Mater. Eval. 76, 1051-1057; Schull
2002 Nondestructive evaluation: theory, techniques, and
applications). Currently, microwave and millimetre-
wave NDT&E is a rapidly growing field and has
been more widely acknowledged and accepted by
practitioners over the last 254 years (Case 2017
Mater. Eval. 75; Bakhtiari 1994 IEEE Trans. Microwave
Theory Tech. 42, 389-395; Bakhtiari 1993 Mater. Eval.
51, 740-743; Bakhtiari 1993 IEEE Trans. Instrum. Meas.
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42, 19-24; Ganchev 1995 IEEE Trans. Instrum. Meas. 44, 326-328; Bois 1999 IEEE Trans.
Instrum. Meas. 48, 1131-1140; Ghasr 2009 [EEE Trans. Instrum. Meas. 58, 1505-1513). Microwave
non-destructive testing was recently recognized and designated by the American Society
for Nondestructive Testing (ASNT) as a ‘Method” on its own (Case 2017 Mater. Eval. 75).
These techniques are well suited for materials characterization; layered composite inspection
for thickness, disbond, delamination and corrosion under coatings; surface-breaking crack
detection and evaluation; and cure-state monitoring in concrete and resin-rich composites,
to name a few. This work reviews recent advances in four major areas of microwave and
millimetre-wave NDT&E, namely materials characterization, surface crack detection, imaging
and sensors. The techniques, principles and some of the applications in each of these areas are
discussed.

This article is part of the theme issue ‘Advanced electromagnetic non-destructive evaluation
and smart monitoring’.

1. Introduction

The field of non-destructive testing and evaluation (NDT&E) involves the development and
employment of techniques to non-invasively inspect and characterize materials and structures
without inhibiting their usefulness or causing irreversible damage [1,2]. An NDT&E system
typically consists of a transducer that produces the interrogating signal and receives the scattered
signal after it has interacted with the material under test (MUT) and a detector that measures the
received signal. Proper analysis of the measured signal provides information about the material
and structural ‘state” of the MUT. An NDT&E system can then be further described by the type of
interrogating signal it produces, the materials it inspects and other metrics such as resolution and
dynamic range [1,3].

The microwave and millimetre-wave frequency range spans from approximately 300 MHz to
300 GHz, corresponding to wavelengths of 1m and 1 mm, respectively [1,4,5]. Figure 1 shows
where these considered methods lie on the electromagnetic spectrum with respect to other
common NDT&E methods. In general, as frequency increases ‘resolution’ increases and the
feature size that can be detected becomes smaller, meaning that microwave and millimetre-wave
techniques can detect relatively small anomalies and flaws [1,4-6].

These techniques are well suited for inspecting dielectric materials, since waves not
only readily penetrate these materials, but are also sensitive to changes in their dielectric
properties [1,5-7]. On the other hand, waves at these frequencies do not penetrate highly
conductive materials (i.e. metals or carbon-based composites). This is due to the limited skin
depth, which is a figure-of-merit that describes the extent to which waves penetrate and decay
in conductors or lossy dielectrics [4]. Despite this, these techniques are highly sensitive to surface
properties of metals for detection of tight surface-breaking cracks, pitting and surface roughness
evaluation [1,8-11].

There are a number of significant and practical advantageous features associated with
these techniques, namely being non-contact, requiring low operating power, producing data in
real time, being compatible with robotic systems for autonomous operation, producing high-
resolution images of structures and being relatively inexpensive testing systems [1,2,12-14].
Consequently, there are many different microwave and millimetre-wave NDT&E techniques that
have been developed for a diverse array of applications. This article provides a review of the
technical foundations and applications of four specific microwave and millimetre-wave NDT&E
techniques, namely materials characterization, surface crack detection, imaging and sensors.
Given the limited space available in this article and in lieu of describing the technical and
practical nuances of each method, a large number of references are provided for the interested
reader.
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Figure 1. NDT&E techniques on the electromagnetic spectrum. (Online version in colour.)

2. Material characterization

Material characterization is at the heart of microwave and millimetre-wave NDT&E, since
material properties can be correlated to the chemical and physical makeup, as well as the
mechanical properties, of materials [1,4-6]. In addition, changes in material properties can be
detected [1]. These in turn give insight into the ‘state of the material’ or MUT. At microwave
frequencies, a material is intrinsically described by its complex permittivity, which is also called
the complex dielectric constant. The complex permittivity, relative to free-space, denoted by &, is
comprises a real part or permittivity (¢,) and an imaginary part or loss factor (¢), as &, = ¢, — je;.
The magnetic properties of a material are described by the relative permeability of a material,
which is denoted as u, [5,15].

Permittivity indicates the propensity of a material to store microwave energy while loss
factor indicates the tendency of a material to absorb microwave energy. Loss tangent is the
ratio of the loss factor to permittivity. In general, permittivity tends to decrease with increasing
frequency while loss tangent tends to increase with increasing frequency [4-7]. This becomes
more of a complex relationship for mixtures made of a host and inclusions. Therefore, dielectric
characterization of materials, over a wide frequency range, can provide valuable information
about material properties. For a mixture, its ‘effective’ complex permittivity is directly dependent
on the complex permittivities of the host and inclusions, their volume contents, any ongoing
chemical reactions and the size of inclusions with respect to the operating wavelength (i.e.
scattering and polarization). Dielectric mixing formulae can then be developed to predict the
effective complex permittivity of mixtures and to back-calculate the individual contributions to
the effective complex permittivity [5,6,16,17].

There are many methods for measuring complex permittivity over a wide range of frequencies.
These methods can be broadly categorized as resonant, transmission/reflection and imaging
techniques [7,18-21]. Additionally, the effects of other parameters such as sample preparation
(for both destructive and non-destructive methods), sample surface roughness, moisture and
temperature on the measurement results need to be considered when selecting a measurement
method [7,16,17,22]. When using any of these methods, typically impedance, scattering
parameters (S-parameters) or resonance frequency and quality (Q)-factor are measured [20].

Microwave and millimetre-wave materials characterization can therefore address a wide
variety of NDT&E needs in applications such as cure-state monitoring in materials like
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resins and rubber, determining critical materials properties in cementitious materials (e.g.
water-to-cement, sand-to-cement and aggregate-to-cement), controlling mixture properties and
determining porosity and distributed micro-cracking levels in materials like ceramics, thermal
barrier coatings and plastics, to name just a few [7,12,23,24]. Application of specific sensors,
such as patch antennas and chipless RFID tags, for materials characterization will be discussed
separately in §5 along with other microwave and millimetre-wave sensors used for NDT&E.

(a) Resonant techniques

Within the category of resonant techniques for materials characterization, there are a variety of
different measurement systems that can be employed. For all of these, the general principle is
to determine the resonance frequency and Q-factor and relate these parameters to the complex
permittivities of the MUT. Some of these measurement systems are described below.

— Resonant and re-entrant cavity: capable of evaluating low loss materials with a high
degree of accuracy at discrete frequencies, but requires that the sample be precisely
machined and sample placement in the cavity is extremely critical. This renders
the method (generally) destructive unless liquids or granular materials are being
evaluated [22,25-34].

— Split-cylinder resonator: consists of a cylindrical cavity split into two sections. Laminar
MUTs can be placed between the two sections to perform non-destructive materials
characterization [7,35-37].

— Microstrip resonator: a resonator is fabricated on a substrate and the MUT is placed on top
of the resonator to ‘load’ it. This changes the resonance characteristics and these changes
are used to determine dielectric properties [38—40].

— Dielectric resonator: comes in many different form factors and has been used to
characterize liquids, powders and thin films [41-44]. Split-post dielectric resonators are
an offshoot of dielectric resonators that have been used to monitor the cure state of
structural adhesive and to determine the dielectric properties of laminar samples over
a wide range of temperatures [45-50].

— Open resonator: consists of two reflectors with a sample platform for solid laminar
samples. They offer a non-contact solution and also have the advantages compared
to cavity methods of being more broadband, having less stringent sample preparation
requirements, and being able to more readily be used at millimetre-wave frequencies.
They are also capable of studying anisotropic materials [51-56].

Employing all of these techniques implies that an electromagnetic (forward) model is available
to describe the interaction of each specific system with material media. Subsequently, through
an inverse model or a forward-iterative formulation, complex dielectric properties can be
calculated [57,58].

(b) Transmission and reflection techniques

Transmission media such as waveguides, coaxial cables, microstrip structures, co-planar wave-
guides and free-space systems can also be used for non-destructive materials characterization.
This category of characterization methods can be further broken down into reflection methods
and transmission/reflection methods [19,59].

In the category of reflection-based methods, primarily open-ended coaxial probes and open-
ended waveguide probes are used. While these two techniques have similar implementations,
they operate under different electromagnetic principles and provide different advantages and
limitations. In both cases, the probe is placed against the surface of the MUT, or with a standoff
between the probe and the MUT [60,61]. In relating the dielectric properties of the MUT to the
response of the probe for both coaxial and waveguide probes, one can examine both the forward
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method and the inverse method. In the forward method, the dielectric properties of the MUT are
known and are used to determine the EM fields or response (e.g. S11). In the inverse problem,
the fields or response are known and are used with an iterative or optimization approach to
determine the dielectric properties [62—67]. Errors can be introduced into the determination of
dielectric properties by air gaps between the probe and the MUT, calibration errors and cable
instability [1,19,61,68].

In comparing coaxial and waveguide open-ended probes, both have the advantage of being
inherently broadband. However, waveguide probes can be used at higher frequencies than coaxial
probes due to small (i.e. very high-frequency) coaxial probes being poor radiators which limits the
signal penetration into the MUT [3,69,70]. For coaxial probes, sample (electrical) thickness plays a
role in the accuracy of the characterization due to limited penetration depth, which is also related
to the operating frequency and the flange size [1,19,61,64,66,71,72]. Owing to the way coaxial
probes operate, they are well suited for characterizing liquids and malleable (soft) materials,
like biological tissues [73,74]. Additionally, they can be used for characterizing thin multilayer
structures, granular and aerated substances, and measuring salinity [1,65,66,75,76]. Open-ended
waveguide probes operate similarly to coaxial probes except that instead of supporting transverse
electromagnetic (TEM) wave propagation, they support transverse electric (TE) and transverse
magnetic (TM) mode propagation and allow for inspecting electrically thick and multi-layered
materials [1,19,57,77-85]. In principle, both coaxial and waveguide probes are capable of fully
characterizing multilayer structures (i.e. algorithms can be used to solve for the complex
permittivity and thickness of each layer), but in practice this is done more frequently with
waveguides, primarily since penetration through several layers of reasonable thickness becomes
a limiting factor for coaxial probes when evaluating multi-layered structures [61,65,77,82,86-88].
In addition, calibration of an open-ended waveguide probe is much more straightforward than
that for a coaxial probe [61].

The development of the process to relate S-parameters to dielectric properties with a full-
wave model for open-ended waveguide probes began in the 1980s [77,79-83,89,90]. From there
higher order modes were added to the formulation and then the ability to determine the dielectric
properties and thicknesses of each layer of a multilayer structure was achieved [57,86]. This has
also been extended for examining gradient changes in dielectric properties which has applications
in examining chloride permeation in concrete [91-95]. In both the forward and inverse models,
an infinite flange is assumed. In order to match experiment with theory, a flange that appeared
infinite while being physically realizable was needed and therefore developed [3,96,97]. In
general, the open-ended waveguide technique is well suited for characterizing solid samples.
Malleable materials and liquids can be characterized with this method [98-100]. However, care
has to be taken so that the material does not protrude into the waveguide aperture, which
can cause characterization inaccuracies [64]. Coplanar waveguides, while typically used in a
transmission/reflection configuration, have also been used in a reflection configuration for
characterizing these non-solid /stiff materials [101].

As previously mentioned, dielectric properties can be related to the chemical and physical
makeup and mechanical properties of that material. The case discussed in [102] illustrates this
and shows the utility of materials characterization for NDT&E. In this case, cement samples
containing (reactive aggregate) and not containing (non-reactive aggregate) alkali-silica reaction
(ASR) gel were temporally characterized using the open-ended waveguide method, and then
an empirical dielectric mixing model was developed to examine the volume fractions (figure 2)
and effective complex permittivities over time. By being able to monitor ASR gel formation
in cement structures over time, valuable insight into the integrity of the MUT over its can be
gained [102].

In the category of transmission/reflection methods, there are filled waveguide and coaxial
methods, co-planar waveguide methods, microstrip methods and free-space methods. In these
two-port methods, both Sy; and Si7 (transmission and reflection coefficient, respectively)
measurements are used to determine the dielectric properties of a MUT [18-20,26,59]. A general
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Figure 2. (a) Permittivity of ASR-reactive and non-reactive samples, (b) Loss factor of ASR-reactive and non-reactive samples,
(c) Volume fractions of inclusions in non-reactive samples, and (d) Volume fractions of inclusions in reactive samples (©IEEE,
2017. Reprinted, with permission, from [102]). (Online version in colour.)

practical limitation of these techniques, especially for the free-space technique, is that for
characterizing materials in structures it is not always possible to place measurement devices
on both sides of the MUT. Another limitation is that for coaxial and waveguide methods the
samples need to be precisely machined to fit within the transmission line without any gaps,
meaning that these methods are destructive except when used to characterize liquids or granular
materials [19,22]. These transmission techniques can be summarized as follows.

— Coaxial transmission line: barriers are used to hold a liquid or granular material in
a portion of coaxial cable between the two measurement ports. Owing to penetration
depth concerns, the length of coaxial line and the barriers need to be precisely chosen
or calibration needs to be done up to the MUT to remove the influence of the
barriers [3,69,103-105].

— Waveguide: a plug loaded method where dielectric plugs are used to hold the MUT in
place during characterization has been developed. This allows for the multiple layers
between the two measurement ports to be characterized [25,106].

— Coplanar waveguide: have the advantage of being very broadband and they have
been used to characterize both solids and liquids. In the case of measuring liquids,
coplanar waveguide devices can use smaller sample volumes than coaxial probes, which
is advantageous for many biological applications [107-109]. Microstrip and stripline
structures have been used similarly [7,110,111].

— Free-space: non-contact technique, which also makes it possible to use this technique to
measure dielectric properties in high-temperature environments [19,112,113]. Traditional
set-ups for this technique have a solid laminar sample placed between two horn
antennas, but granular materials have also been used with sample holders with this
technique [112,114-116].
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(c) Imaging/scanning

The last category of non-destructive materials characterization techniques are imaging-based
techniques, which often involve scanning the MUT. Near-field probes, like the systems in
the resonant devices section, use changes in resonance characteristics to determine dielectric
properties and are often used in microwave microscopy systems. Owing to their resonant nature,
these systems provide characterization at discrete frequencies. To determine the broadband
dielectric properties curve fitting methods can be used. In these systems, the probe is scanned
over an MUT and dielectric properties are determined at different locations. This information can
then be formulated into an image [115,117-125].

A similar, yet different approach, is employing microwave imaging with synthetic aperture
radar (SAR) processing to extract dielectric properties. This approach, which is very recent, uses
a waveguide or horn antenna as the transducer rather than a near-field probe, meaning that this
method is inherently more broadband than the near-field resonant probes used in microwave
microscopy. While the method discussed in [126] provides only one complex permittivity value
for the MUT, the method proposed in [21,127] can provide a distribution of dielectric properties
for the MUT. In general, this technique shows great potential for spatially mapping dielectric
properties in MUTs in a non-contact non-destructive manner. More information on microwave
imaging and microwave microscopy are provided in §4.

As has been shown, there are many different microwave and millimetre-wave NDT&E
techniques that can be used for materials characterization. While using imaging to generate
spatial maps of dielectric properties of MUTs is the newest materials characterization technique,
other recent developments and improvement areas of interest include creating measurement
systems that are more compact, accurate and user-friendly; enhancing the speed of the algorithms
used to determine dielectric properties; and better understanding the effects of other material
properties and the environment on dielectric properties [31,116,127-132].

3. Surface crack detection

Although there exists a multitude of ‘standard” NDT&E techniques for surface crack detection in
metals, introduction of microwave and millimetre-wave techniques for this purpose dates back
to the late 1960s [8-10,23]. However, in the past 25+ years, much has taken place with respect to
the development and advancement of microwave and millimetre-wave techniques for detecting
tight (fatigue) surface-breaking cracks in metals [1,2,11,23]. Although high-frequency signals do
not penetrate conductive media such as metals, they can effectively interact with their surface
properties. When a microwave or millimetre-wave signal irradiates a metal surface, it induces
a surface current density [133,134]. Any type of surface anomaly, such as a surface-breaking
crack, perturbs this current density, which in turn scatters some of the wave. The properties
of the scattered wave depend on the frequency, probe characteristics, wave polarization, crack
dimensions, whether the crack is filled with a dielectric (i.e. paint, rust) or covered with
a coating of paint (and rust), etc. Therefore, a clear understanding of these electromagnetic
properties can provide a significant amount of information about the ‘state’ of a crack [134-148].
The advantageous features of these techniques include, non-contact measurement, crack sizing
capabilities, probe optimization for improved crack detection, detection of cracks under coatings
and filled cracks, distinction between cracks and surface scratches and pitting, crack (preferred)
orientation evaluation, rapid measurements, electromagnetic modelling capabilities leading to
size evaluation and optimization and no signal clutter from within a conductive material.
Generally, microwave and millimetre-wave crack detection techniques involve scanning a
probe over the MUT surface. Near-field techniques can be performed through one-dimensional
(1D) or two-dimensional (2D) raster scans. Although crack detection is possible through far-field
SAR techniques, near-field techniques have proven to be more effective when identifying small or
tight cracks [149]. Thus, most of the techniques explored have been near-field techniques that use
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Figure 3. (a) Top view diagram of a surface crack and an open-ended rectangular waveguide and (b) measured voltage
(proportional to reflection coefficient phase shift) versus probe location as it scans over the crack (© 1994 IEEE. Reprinted, with
permission, from [131]). (c) Top view diagram of an open-ended coaxial probe scanning over a surface crack in a metal plate and
(d) graph of the phase of the measured reflection coefficient as the probe moves over the crack (from [155] Copyright © 2002 by
the American Society for Non-destructive Testing Inc. Reprinted with permission). (Online version in colour.)

open-ended rectangular waveguides [133,135-148,150-152], open-ended coaxial probes [153-158]
and resonant probes [159-163], among others.

(a) Open-ended wavequide probe

The use of microwave and millimetre-wave techniques for crack detection primarily depends
on the interaction of a surface-breaking crack with induced surface current density on the
metal surface. When using open-ended waveguides (the most widely applied probe), this
surface current is generated through the excitation of the dominant TE mode of a rectangular
waveguide, in which the electric field polarization vector points along the narrow dimension of
the waveguide. When the waveguide aperture is placed near a metal surface, a surface current is
induced on the metal surface which flows in the same direction as the electric field polarization
vector. The presence of a surface-breaking crack near the waveguide opening, like in figure 34,
causes a perturbation in the induced surface current and consequently a shift in the phase
of the reflection coefficient. This perturbation is maximal when the preferred crack length is
perpendicular to the flow of the induced surface current, and thus the probe must be properly
oriented relative to the crack.

The probe can be scanned over the metal surface while measuring the reflection coefficient
seen by the waveguide. Figure 3b shows the measured voltage versus probe location (henceforth
referred to as crack characteristic signal) for a long crack (crack length greater than the waveguide
broad dimension) with width of 0.84mm and a depth of 1.03mm, measured with a K-band
(18-26.5 GHz) waveguide at 24 GHz. This measured voltage is proportional to the shift in phase
of the reflection coefficient seen by the probe [133].

In-depth modelling of this crack characteristic signal has allowed for better detection
capabilities and more optimal probe design [144] and additionally has given way to methods
of crack sizing through the matching of the crack characteristic signal to the model, most notably
width and depth determination [137,143]. Determining the crack length, or rather the locations
of the crack tips, can be performed by identifying the crack tip characteristic signal while
scanning along the preferred crack length [138]. Other crack sizing techniques that have been
explored include, depth determination using resonant frequency measurements [147,148] and
the consideration of higher order modes generated by the presence of a crack to better facilitate
detection [135]. Open-ended waveguide techniques have also been used in differential probe-
based systems, consisting of two waveguides situated side-by-side, where the output of the
system is the difference in reflection coefficient seen by the two waveguides. This configuration
allows the effect of perturbations located in only one waveguide, such as a crack, to be isolated,
thereby eliminating the effect of common signals, such that those caused by covering paint layers
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and non-uniform surfaces [145,164]. This methodology has also been applied for crack detection
in concrete structures [165].

(b) Other probes

The effectiveness of the open-ended waveguide probe gives rise to alternative probe types
relying on the same operational principle. Most notable are open-ended coaxial probes, shown
in figure 3c, which have a couple primary advantages over rectangular waveguide probes.
One advantage arises from the dominant TEM mode of the coaxial probe, which is inherently
wideband. This large bandwidth gives a high degree of flexibility in regards to probe size,
allowing cracks to be detected that are thousands of times narrower than the operating
wavelength. Another significant advantage of this type of probe is its radial symmetry and thus its
lack of a preferred electric field polarization vector direction, which eliminates crack orientation
as a concern. The advantages it provides have made the open-ended coaxial probe a viable tool
for crack detection [153-155,157].

The graph in figure 3d shows the phase of the measured reflection coefficient as the coaxial
probe moves over the crack in a direction perpendicular to the crack preferred length for a long
crack with width of 0.152 mm and a depth of 1 mm, using a coaxial probe inner and outer radius
0.5mm and 1.5mm, respectively, at 10 GHz [156,157]. This crack characteristic signal illustrates
the high sensitivity of the coaxial probe to crack dimensions, even at a relatively low frequency
(the wavelength at 10 GHz is 30 mm and the crack indication width is less than 0.2 mm). Although
this sensitivity gives way to methods of crack sizing, it can also be a disadvantage, since even
tiny perturbations in the probe geometry can have a large effect on the crack characteristic
signal, leading to discrepancies between the model and measurements. Much work has gone
into modelling of the interactions of this type of probe with surface-breaking cracks [156—
158,166]. Recently, improvements in the modelling of the open-ended coaxial probe includes the
consideration of a cone shaped aperture profile, resulting in a better understanding of the critical
geometries in the probe design [158].

Other crack detection techniques make use of resonant frequency shifts to indicate cracks. This
type of crack detection sensor generally consists of an electromagnetic resonator combined with
an interrogating probe capable of exciting the resonator and measuring its resonant frequency.
When a resonator is scanned over a metal surface, a surface-breaking crack interacts with the
electric field, consequently initiating a measurable shift in resonant frequency. The resonant
frequency can then be measured as a function of probe location, where a large shift in frequency
indicates a nearby crack. The split-ring resonator design has been proven to be effective for crack
detection [159-163] and has been successfully demonstrated using microstrip lines [159-161],
waveguides [162] and substrate-integrated waveguides [163] as interrogating probes. Resonant
frequency-based crack detection techniques have also shown some promise in crack sizing,
exploiting the relationship between crack dimensions and the amount of resonant frequency
shift [162].

As shown here, there are a variety of microwave and millimetre-wave NDT&E techniques that
can be used in crack detection applications. Additionally, there is a large potential for the utility
of polarimetric measurements (i.e. dual-polarized probes, circular polarization, etc.) for crack
detection and characterization. Future research will explore this potential and will include further
development and expansion of the efficacy of far-field (SAR-based) techniques for rapid detection,
sizing and characterization of surface-breaking cracks in metals, as well as improvements upon
existing near-field techniques.

4. Imaging

Microwave and millimetre-wave imaging is the process of creating a 2D (or three-dimensional
(3D)) map of electromagnetic properties of a MUT [1]. The electromagnetic property can be an
intrinsic material property, such as relative complex permittivity (¢) or relative permeability (ur),
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or can be quantities that are proportional to these material properties such as reflectivity as well
as geometrical features (e.g. a crack) [1,167]. Therefore, such images are produced as a function
of material property contrast in an object and geometry (relative to the operating wavelength).
Microwave imaging probes are essentially antennas. Hence, imaging techniques can primarily
be classified as either near-field or far-field techniques depending on the (electrical) distance
between the probe and the MUT [15,168]. Microwave images are primarily produced using
raster scanning, although in lieu of mechanical (raster) scanning, 1D and 2D arrays of antennas
can be assembled, to perform rapid electronic scanning. In either case, a 2D matrix consisting
of measured data, commonly a DC voltage or complex scattering parameters, as a function of
frequency and proportional to the local reflection properties in a specimen is obtained [168]. The
collected data are then mapped directly to a contrast image or processed using backpropagation
algorithms (e.g. SAR) [167-169]. Thus, the choice of imaging technique, probe type and frequency
of operation are dependent on the sample properties and the target features (e.g. crack, void,
delaminations, etc.).

(a) Near-fieldimaging and microwave microscopy

Near-field microwave imaging is performed with a relatively small (electrical) distance between
the probe and the surface of the MUT. In the near-field region, the high sensitivity due to the
presence of reactive evanescent waves, as well as high-resolution imaging due the concentrated
electromagnetic energy (i.e. small-sized probes), are possible. The image resolution in near-field
scanning is mainly governed by the physical aperture size of the probe (i.e. not diffraction
limited) producing very high-resolution (< A/100 or better) images using relatively simple probes
with very small (compared to wavelength) apertures [1,170]. Near-field image resolution and
sensitivity to sample variations and flaws are functions of probe aperture size, electromagnetic
field distribution in the near-field of the probe and distance to MUT (i.e. standoff distance).
Near-field electromagnetic field distribution is a strong function of distance away from a probe,
which makes near-field imaging very sensitive to standoff distance and more importantly to its
variation during a scan [144,171]. There are several different types of near-field probes that may
be used (open-ended rectangular and circular waveguides, open-ended coaxial lines, microstrip
patches, cavity resonators, etc.), each providing its own unique advantageous features and
limitations for a specific application [1]. Open-ended rectangular waveguide antennas are widely
used for near-field imaging due to ease of integration with microwave and millimetre-wave
circuits, availability of standard waveguide calibration kits, and for being a reasonably efficient
antenna over the complete waveguide band. Furthermore, the dimensions of the waveguide
aperture are on the order of /2 and A/4 on each side providing images resolutions matching
or higher than the diffraction limit without any post-processing. The open-ended waveguide
probe aperture geometry can be further modified (reduced in size) to increase resolution and
sensitivity to flaws. An example of these modifications is tapering the waveguide to a smaller
aperture and using a thin dielectric slab as an insert which focuses the electric field [144,148]. For
microwave microscopy, probes have been designed that incorporate very small probe tip, along
with a resonator to achieve super-resolution. Microwave microscopy techniques provide limited
penetration depth; however, they can be used to characterize surface properties of metals, semi-
conductors and dielectrics with great accuracy, provided extreme consistency in standoff distance
during testing [170].

As described earlier, maximum sensitivity to sample variations can be obtained at the near-
field of the probe. Yet at those distances, the probe is also very sensitive to variations in the
standoff distance which can be caused by misalignments between the scanning platform and the
MUT surface or by sample surface curvature. This high sensitivity to standoff distance variation
can prove detrimental when the target defects are small or low-scattering such as tight and short
cracks and surface micro-pitting in metals [146]. Several techniques have been proposed that
perform compensation for standoff distance variation, such as a potentiometer in contact with
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the sample [171], using a dual aperture differential probe [146], and a dual-polarized probe which
is used on polarized surfaces like unidirectional carbon fibre composite [172].

(b) Far-field imaging with focusing lenses

In near-field imaging, resolution and sensitivity degrade rapidly with distance since the radiated
electric field from a small probe expands rapidly with distance. In some applications, such
as when imaging thick composite structures (depending on the material properties), operation
from a larger distance (far-field) becomes necessary. Therefore, to maintain image resolution
and sensitivity from this distance an antenna with a focused beam may be used. A lens
antenna provides a focused electric field pattern and subsequently high resolution at a distance
corresponding to its focal length. Lens focusing is practical, for NDE applications, at single
frequencies in the millimetre-wave frequency range on the order of 50 GHz or higher due to
required electrically large aperture lens. A drawback of using lens antennas is that their focal point
is only at a specific distance from the antenna and also changes with frequency. Furthermore, this
focal point is typically specified for operation in air; therefore, the focusing capabilities of the
antenna can further degrade when used to image materials with a relatively high permittivity
and loss. High-resolution imaging using lens antennas has been successfully demonstrated
for imaging through thick spray on foam insulation samples for the detection of voids and
delamination [173].

(c) Synthetic aperture radar imaging

Microwave and millimetre-wave imaging using antennas or lenses for focusing microwave
or millimetre-wave signals are referred to as ‘real-aperture” focused techniques. Practical real
apertures reported in the literature are relatively large antennas with a diameter up to 1001
which provide an aperture-limited resolution on the order of approximately 2-51. Additionally,
such real-aperture techniques are only focused at one plane at its focal distance as mentioned
above [173]. High-resolution imaging methods, based on (backpropagation) SAR algorithms, are
capable of producing 3D holographic images of dielectric structures. Such imaging methods are
extremely valuable for inspecting the ever-increasingly used nonconductive composite structures
that have been replacing metals in many industries [174,175]. Figure 4a shows the fundamental
principle of SAR imaging. A small antenna (with broad radiation pattern) is raster scanned along
a 1D path or across a 2D grid forming a synthetic array or aperture [176]. The antenna is connected
to a wideband reflectometer which performs coherent (referenced) reflection measurements from
multiple angles (views) of the sample. The collected reflected data is then processed by a fast
3D SAR algorithm (e.g. w-k algorithm) to produce a 2D or 3D holographic image of the sample
under test. Figure 4b shows a comparison between an X-ray and a millimetre-wave (Ka-band,
26.5-40 GHz) SAR image of an adhesive joint in a fibreglass structure. Similar to X-ray, the SAR
image shows the locations of the missing adhesive while also showing higher sensitivity to the
non-uniformity of the fibreglass structure. SAR imaging provide range (depth) resolution:
v

=55

In equation (4.1), v is the wave velocity inside the material and B is the bandwidth of the
microwave signal. The cross-range resolution is on the order of 1/4 at distance close to the
synthetic array and it degrades (becomes aperture limited) as distance increases [169].

Many composite structures are made of multiple stratified layers of dielectric materials, each
with a permittivity value. Additionally, often there is a layer of air (i.e. standoff distance) between
the synthetic aperture and the surface of the sample. SAR algorithms can be made to account
for the permittivities of these various layers to properly compensate for the coherent wave
propagation through these multi-layered materials. Recently, two SAR-based techniques were
developed for microwave imaging of embedded objects inside of layered structures. The first
method, piecewise SAR (PW-SAR), which considers physical/electrical properties of each layer

s (4.1)
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Figure 4. (a) Schematic of synthetic aperture imaging using a small antenna and (b) a comparison between an X-ray and
a millimetre-wave (26.5-40 GHz) image of voids in an adhesive joint of a fibreglass structure. (Sample and X-ray image are
courtesy of Fibreglass Structural Engineering). (Online version in colour.)

(@ (b)

Figure 5. (a) Picture of microwave camera scanning a wood composite with animbedded rubber insert and (b) a screen capture
of the produced real-time 3D image of the wood composite, also showing the operator’s fingers. (Online version in colour.)

between the scanning antenna and the object. The second method is rather comprehensive,
namely, a Wiener filter-based layered SAR (WL-SAR) which relies on the Green function model
of layered structures [177]. Calibrated SAR images can also be used to generate high-resolution
quantitative images showing the complex permittivity in a material [21]. A 3D imaging can also
be performed in non-Cartesian planes (e.g. cylindrical) using the appropriate algorithms such as
SAR or time reversal [167,178,179].

A major benefit of SAR imaging is that it can be performed using physical antenna arrays
which enables production of real-time images [176,180-182]. Early imaging array designs
used modulated scattering techniques [176,180]. SAR imaging can also be performed using
simple interferometric reflectometers. The major advantage of such a reflectometer is that
its output is phase-referenced to the aperture of the imaging probe (e.g. an open-ended
waveguide) for all frequencies, thus no post-measurement phase-referencing (i.e. calibration)
is required for wideband operations [183]. Such a design allows for building compact and
relatively low-cost, real-time, portable and wideband (3D) imaging arrays (or a microwave
camera) [184-186]. Figure 5 shows a picture of a microwave camera that is capable of
producing images at a frame rate of up to 30 frames per second and a screen capture
of a 3D image produced in real time of a wood composite sample with an embedded
rubber piece in its centre [184]. With the rapid and continual advancement in millimetre-
wave integrated circuits, designs of microwave and millimetre-wave imaging systems are
constantly evolving and optimized more-capable designs for specific applications are becoming
possible.
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5. Sensors and sensing

In the area of microwave and millimetre-wave NDT&E, sensors have been developed to monitor a
wide variety of measurands including temperature, strain, dielectric properties, torque, humidity
and much more. Broadly, these sensors can be categorized as either wireless or wired and as
either active or passive. Furthermore, they can be described by whether they operate in the time
or frequency domain, by whether they provide distributed or localized sensing capabilities, and
by how they interact with material or structure they are monitoring [187,188]. Given the breadth
of the area of sensing for NDT&E, only three categories and microwave and millimetre-wave
sensing solution are discussed in the context of two examples each: sensing with transmission
media probes, wired solutions and wireless passive solutions.

(a) Sensing with transmission media probes

In previous sections, both waveguides and coaxial cables were discussed in the context of multiple
applications. Additionally, these probes have been used for other NDT&E sensing purposes.
Coaxial cables have been used to create sensors for nanometre scale displacement sensing and
crack/strain sensing in reinforced concrete, to name just two of many examples [189,190]. In using
coaxial cables as sensors, optical devices, like Fabry—Perot interferometers and Bragg gratings,
have been used as inspiration [189,191-196]. In the case of the displacement sensor, an open-ended
hollow coaxial cable resonator was created with its resonance characteristics being sensitive to
changes in displacement. While inspired by optical devices, this sensor is much more rugged
than optical fibre-based sensors, while also being less expensive and operating in the microwave
frequency regime [189]. Another coaxial sensing technique uses changes in the outer conductor
with time domain reflectometry (TDR) to provide distributed sensing of cracks and strain. This
solution in comparison to the previous displacement sensor example would be embedded in a
structure making it more invasive [190].

Beyond being able to be used for materials characterization, crack detection and imaging,
waveguides have additional sensing applications including thickness determination, disbond
and corrosion detection, to provide a few examples [1,23,60]. When using waveguides, thickness
determination and detecting disbonds can go hand in hand. These two NDT&E applications are
typically done for layered composite materials that are either backed by free-space, dielectric
layers or a conductor [1,23]. The disbonds appear as air gaps between the layers and the
thickness of the disbond as well as the thickness of the layers can be determined. This is
done by relating how the magnitude and phase of an S1; measurement from an open-ended
waveguide change due to thickness through models and algorithms [60,197,198]. As previously
discussed in §2, thickness can also be determined for multiple layers while performing materials
characterization [86].

(b) Wired solutions

Wired solutions tend to be more invasive than wireless or probe-based solutions. Modulated
scatter technique (MST) probes and microstrip patch antennas are two types of typically wired
microwave and millimetre-wave sensors that have been used for NDT&E applications. MST
probes are typically small dipole antennas loaded with lumped elements (e.g. PIN diodes) that are
modulated by an external source. By modulating the probe, the wave it scatters is also modulated
making it easier to distinguish from background reflections. MST probes have found applications
in NDT&E by being used as sensors for dielectric properties, corrosion and disbonds [199-205]. By
being embedded into structures, they can be used to sense local structural integrity and perform
monitoring over time [199,206-209]. While these sensors haven’t come into practical use, they
have laid the foundation for other embedded microwave sensors [210].

Microstrip patch antennas have also been used as sensors by either being embedded
or attached to materials or structures [187,211]. As with the previously discussed types of
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Figure 6. Chipless RFID tag examples. (Online version in colour.)

sensors, this type of sensor has also been used for many different applications, including
temperature [212,213], strain [214-217], dielectric properties [212,218,219] and crack sensing [220].
Being planar, patch antennas can also be made to be flexible and/or conformal to the structures
they will monitor [214].

(c) Wireless passive sensors

Wireless passive sensors contain no power source and no physical transmission media (i.e.
cable) connection back to instrumentation. In the microwave and millimetre-wave regime, these
sensors are interrogated with an electromagnetic wave and their response is correlated to sensing
parameters. One type of these sensors are frequency selective surfaces (FSS), which are planar
periodic arrays of conductive shapes or slots cut out of conductor planes that create a specific
frequency response (typically resonant) to an interrogating electromagnetic wave [221,222].
While an FSS can be active or passive, passive FSSs are the focus here [223]. FSSs have been
widely used in radome and filtering applications, but have also found a role in sensing-based
NDT&E [221,222]. For FSS-based sensors, typically either a material that is sensitive to the sensing
parameter (e.g. temperature sensitive dielectric) or a unit cell element that is sensitive to the
sensing parameter (e.g. a cross loop whose resonance characteristics are sensitive to strain) are
used [224-226]. These two sensing methods can also be combined to create an FSS that is capable
of sensing multiple parameters simultaneously, which is especially useful in cases where one
needs to understand the effect of one parameter on another like is the case with strain and
temperature [227]. Beyond temperature and strain sensors, FSSs have also been used for crack
detection and materials characterization [228-231].

Radio frequency identification (RFID) systems can also be used for NDT&E and consist of a
reader and a tag. Chipless RFID is the newest area within the RFID field and is thus discussed
here [232-234]. Chipless tags, having no power source and no IC, instead ‘store” their information
in their tag structure. Examples of tags are shown in figure 6. When interrogated with an
EM wave, the tag’s response (typically the radar cross-section (RCS) versus frequency or Sij
response) reveals this stored information [235,236]. A binary code can then be assigned to this
response, which typically contains a collection of resonances. Manipulating the tag structure or
the environment that the tag is in causes a change in this response and in turn changes the binary
code. This mechanism is typically used to perform identification, but can also be used to perform
sensing [235].

Chipless RFID sensor tags have been developed for sensing a wide variety of phenomena
including temperature, corrosion, strain, rotation, displacement, humidity, cracks and dielectric
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properties [210,237-253]. With these sensor tags, there are four common ways in which the
response is translated into a sensing parameter

— Associating a resonance frequency shift with a sensing parameter [238,250].

— Associating a magnitude change in a peak or notch with a sensing parameter [244,254].

— Associating a response shape change with a sensing parameter [255].

— Associating a change in tag characteristics, such as gain or maximum RCS, with a sensing
parameter [252,253,256].

As previously inferred, beyond these sensing mechanisms binary codes can also be assigned
to responses and the change in the code can be used to perform sensing [210,235]. Owing to this
technology still being relatively new with the first chipless tags being reported in 2007, there
are still many challenges to overcome like tag localization, read range extension, tag detection,
orientation sensitivity and manufacturing tags in a quick and inexpensive fashion so they can be
widely deployed [235,257-260].

As can be seen, there are a wide variety of microwave and millimetre-wave sensors that
can be used for NDT&E purposes. Owing to their minimally invasive nature and long lifetime,
wireless passive sensors are of growing interest. In making this type of sensor more practical,
there are a variety of advancements being made including lower power electronics [261,262], new
energy harvesting circuits [263-265], using inkjet-printing for inexpensive fabrication [266,267],
extending read ranges for non-contact long range monitoring [258,268-270], developing
novel post-processing techniques [259,271,272] and creating more robust sensors for extreme
environments [273,274], to name a few.

6. Conclusion

As has been shown, the field of microwave and millimetre-wave NDT&E has broad applicability;
while these techniques are limited in terms of penetration capabilities of conductive materials,
they are optimal for dielectric material inspection and can be used for examining surface-
breaking defects of conductive materials. Techniques such as open-ended waveguide materials
characterization, coaxial probe surface crack detection, microwave SAR imaging and embedded
high-frequency sensors provide a broad range of inspection capabilities across many different
application areas including, security, aerospace, biomedical and civil. It is expected that these
methods will see more utility in the future, especially as high-frequency components become
more readily available commercially and as form factors and costs reduce as a result. In
addition, these techniques can be combined with other NDT&E techniques to enhance inspection
capabilities [275,276]. Furthermore, as areas such as Al, IoT and image and signal processing
advance, it is envisioned that they will be more widely applied to microwave and millimetre-
wave NDT&E as they are in other NDT&E methods.
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